
Improved Methods to Calculate the Characters of 
the Symmetric Group 

By Stig Com6t 

l. Introduction. It was shown by Bivins and others [1] how the characters 
x P of the symmetric group of degree N may be calculated with the aid of an elec- 

tronic computer. By repeated use of a recursion formula due to Murnaghan (ref. 
in [1]), the characters are finally expressed by means of special characters, with 
K _ 1 N for which an explicit formula exists, due to Frobenius. The same principle 
was applied in a program written for the electronic computer BESK at Stockholm. 
As was indicated at an early stage [2], 1 have used the Nakayama version of the 
recursion formula in this program, thus avoiding some of the trials giving zero terms. 
Aiming at economy with respect to storage space, in order to permit as high values 
of N as possible, I tried different ways of representing partitions binarily; some of 
them were describedd in 131. The one which was then called Second Method turned 
o)ut to be most e(Jiveliient. Some details of the program are described in ?4 as an 
introduction to the use of this method. The general plan of the calculation is given 
in ?3. Some o)bservations from the runnings are reported and briefly discussed in ?5. 

It should be mentioned here that the program has been run at BESK, free of 
cost, (luring periods wheni machine time has been available. I am very grateful to 
Matemaltikimasskiiiiiimnmdein, '1'he Swedish Board for Computing Machinery, for 
this favor. 

The employed notation for partitions is a useful tool even for certain theoretical 
considerations. This fact was developed recently [41, and we shall quote, in ?6, 
some of the results obtained. Further, in ?7 and ?8, we shall deduce a few formulas, 
expected to simplify the character calculations. 

2. Definitions, Notations, and Formulas. We denote by x1% a simple character 
of the symmetric group of degree N, remembering that this character is completely 
identified by two partitions, p .waid K, of the integer N. One of them, written as a 
subscript, indicates the class of conjugate group elements to which the character 
corresponds, the other one, written as a superscript, determines the irreducible 
representation from which the character emanates, as the trace of the representing 
matrix. In particular, the partitions p = (N) and p (lo) specify the unit and 
the alternating representations, respectively. 

The class K = (1' ) consists of one element only, namely the unit element of 
the group. In a representation indicated by the partition p = (r1, r2, * , rn), 

where r1 > r2 _ ... > r. > 0, the corresponding character is obtained from the 
Frobenius formula 

(1) x(^) - 
N! n (R.-Rj) 

R, !R2 ! R... R (i <j) 

where 

(2) Ri = ri + m -i; i = 1, 2, . I- m. 
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There is no closed formula giving the characters of an unspecialized class 
K = (k1, k2, ***, k.), but, with the aid of Murnaghan's recursion formula 

P = :e P(i) 
(3) Xx= EiX 

they may be expressed by means of characters of a symmetric group of lower degree. 
In (3), the partition K' appears, if one of the components of x, say k., is deleted. 
The partitions p(s) are obtained from p following certain rules, also telling us whether 
the sign factor ei has the value + 1 or -1 or 0. 

The method of hook removals, introduced by Nakayama [51, simplifies the 
application of (3) in two respects. Firstly, by this method only those p(" are calcu- 
lated which correspond to an ei P 0, and, secondly, the value of ei is obtained as 

(4) f-= (_ Oz' 

where zi is the so-called leg-length of a hook. 
It is advantageous to use, for the representation partitions p and p") in (3), 

the notation introduced as Second Method in [3]. From now on, we shall give to 
this notation the name of rim of the partition, because of its geometrical meaning, 
as in a paper by Frame and others [6]. The rim R of a partition p = (r1 , r2, ... , r.) 

can be defined as a sequence of binary digits, in which each component ri is repre- 
sented by a digit = 0, immediately followed by r -ri+1 digits = 1, considering 
rm +i to be = 0. For example, the rim of p = (6.6.5.5.3.2) = (62.52.3.2) is 

(5) R = 001001101011. 

Conversely, the partition p is easily reconstructed from R, the component ri being 
equal to the total number of 1-valued digits to the right of the ith zero. Evidently, 
1 -valued digits to the left, and zeros to the right, do not influence this determination 
of ri, nor do they affect the definition of R. Therefore, a sequence of digits like 

11111001001101011000000 

is considered to be a rim of the same partition p as (5). We will distinguish (5) 
as the normalized form of the rim. In a computer as BESK, where the basic opera- 
tions, assuming fixed binary point, act on numbers with absolute value 1 l, the 
rims are conveniently inserted immediately after the binary point. Thus, the rim is 
represented by a number 

m 

(6) R = 1 - 1 + Z2Ri) .2R 

where Ri has the same meaning as in (2) and Ro is an arbitrarily chosen integer 
(within the scope given by the word-length) satisfying Ro > R,. The normalized 
form of R corresponds to Ro = R, + 1. 

The geometrical illustration of R is obtained, if the digits are represented by 
adjacent line segments of equal lengths, those labeled 0 being directed vertically 
downwards, those labeled 1 horizontally to the left. The broken line constructed 
in this way is precisely the right, lower rim of the Young diagram of the partition 
p. Historically, the notation R was first based- on this geometrical figure. 

Each pair of digits, formed by a 0 in a rim and a 1 situated k steps in the rim 
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to the right of this 0, is said to form a hook of length k in the rim or, shorter, a 
k-hook. It corresponds to the Nakayama hook, and, together with the intermediate 
digits, it is a binary representation of the rim-hook used by Frame and others [6]. 
The two digits which form the first mentioned pair will be called the end digits 
of the hook. The number of zeros between the end digits is = zi in (4). The removal 
of a hook is effectuated by simply interchanging the two end digits of the hook. 

In terms of the expression (6), these considerations will read as follows. The 
jth 0 of R, if counted from the binary point, may be used as left end digit of a k-hook, 
if and only if Rj - k is different from all the quantities Ri . If this condition is ful- 
filled, the hook will he removed by substituting Rj - k for Rj in that term of (6) 
where i = j. Thus, the value of R will change to R+ where 

(7) Re+ = R + (1 - 2 -k) .2RjiRo 

The number zj of zeros b)etweerl the end digits is equal to the number of indices i 
for which R, > Ri > i? - k. 

Another operation used in the calculation process is the passage to the rim R of 
the partition p, conjugate to p. This rim R is obtained by writing the digits of R in 
the reversed order, replacing each I by 0 and each 0 by 1. Thus, corresponding to 
the example (5) we get 

fd = 001010011011 

being the rim of A = ((i'.; 4 22). 
It should he noted that the (essential part of our notation is the sum 

(8) 2Ri = r 

which enters in tIle expression (6). The special form (6) was chosen in order to 
adapt it to the operation list of BESK. It is clear that the form may be modified so 
as to suit other comipuit(ers. 

3. The Actual Calculation Program. In order to avoid complication, I have 
restricted the calculation to those representations p which can be stored, by means 
of their rinms, within one word in BESIK. This means the following restriction for 
technical reasons, 

(9) rA + m ? 38, 

r1 being the greatest, component, of p, as before. This condition indicates the limit 
of the capacity of the program ill its present form. 

If p varies through all partitions of N, we have ri + rn < N + 1. Hence, N must 
in such cases be limited to 

(10) V < 37. 

For an isolated p, satisfying (9), N may be greater. For instance, if p = (1919), we 
get N = 192 = 361, the greatest value of N that can appear in the present -version 
of the program. 

The partition X is stored in a different way (see below), not using the rim, but 
requiring that the components, ka, of K satisfy the condition 

(11) ka < 37 forall a = 1,2,-- ,n. 
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In fact, if a component of K is _ r1 + m, the value of xP' is 0, and there is no need 
for calculation. Thus, the condition (11) means no further restriction, from a 
practical point of view. 

Originally, the program was not intended to calculate complete character tables, 
but only to give individual characters, thus serving as a substitute for a character 
table. A set of compiling routines, activated by different start operations, has later 
been added, permitting the program to work in the following variants: 

(i) Calculate all x!' for a given N, under the heading of one p at a time, either 
for strictly all partitions p or for only one in each pair of p and A. Stop after the 
completion of an N, and then, after start, continue with the next, N + 1. 

(ii) As in (i), but under the heading of one K, instead of p, at a time. In the 
case when x! is not calculated because x," has already been, the letter C is printed 
(for "conjugate"). 

(iii) Calculate all x,' for one given p. 
(iv) Calculate all x. for one given K. 

(v) Calculate XK for one given pair of p and K. 

(vi) As in (iv) but, instead of giving out the values of x,,', select the one having 
the greatest absolute value. Print this xXp together with the corresponding p and K. 

The central, common part of these programs will now he outlined, and a few 
points of it will be treated in greater detail. Suppose that p and s are already repre- 
sented in the computer, p by means of its rim R, inserted, in its normalized form, in 
a storage cell, while K is represented in the following way. Let us write 

(12) K = (k, k2, kt, 1) 

where 

ki + k + + k. + Nr. 

rhe order of succession of the components ka (a = 1, 2, .., n) must be fixed 
before the calculation, not necessarily a monotonous order although it is appro- 
priate to begin with the greatest components. There may be some ka = 1, but in 
most cases all the 1-valued components are comprised in 1q. Now, each of the com- 
ponents ka will be stored as represented by a number 2-4+k. For the storage of 
these numbers a set of cells are at disposal, which we will call Ha. The number q 
is separately stored. 

The calculation method consists in a repeated use of the recurrence formula (.3), 
removing successively hooks of length ki, k2, I *, k, by the rule (7). After this, it 
remains to make calculations using (1) with q for N. The rims of the representation 
partitions appearing after the hook removals will be stored in a set of cells, called 
Wa (a = 1, 2, * . , n), where Wa will contain a rim from which a ka-hOok is the 
next to be removed. Its sign position will contain the sign factor resulting from the 
preceding hook-removals. 

Designating by x a quantity intended to get the end-value x.', by P and P+ 
two partition rims under consideration, and by e and e+ certain corresponding sign 
factors, we describe the calculation: 
1. Insert initial value 0 for x. 

If n = 0, i.e. if K = (iv), put R for P+ and pass directly to point 6 below. 
If n > 0, insert R into WI, put 1 for a, and arrange such an order modification 

that point 3 will not be neglected. Pass to point 2. 
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2. The contents of Wa are examined: The sign digit of this word replaces e, the rest 
of it replaces P. Pass to point 3 or 4 according to latest order modification. 

3. The positions j of the left end-digits of all possible k.-hooks in P are determined. 
Digits = 1, placed in the found positions, are called hook indicators and are 
inserted into H. (together with the number 2-4O+ka already stored there). 
Pass to point 4. 

4. The contents of Ha are examined: 
If there are no hook indicators, change a to a - 1. 

If the new a > 0: After modification so as to neglect point 3, pass to point 2. 
If the new a = 0: Calculation ended. Pass to output routine. 

If there are one or more hook indicators: The most significant of them is removed 
from Ha. Corresponding to the same indicator, the ka-hOOk is removed 
from P), giving I'+. The number, z, of zeros within this hook is counted, 
and e- (-1)z gives e+. 

If a < n: Pass to point 5. 
If a = n: IPass to point 6. 

5. Insert e+ into the sign position and P+ into the other positions of Wa+, . Change 
a to a + 1. After order modification, assuring that point 3 will not be neg- 
lected, pass to point 2; 

6. Calculate X(IP) using formula (1) for the partition T corresponding to the rim 
P+. -NB. For all p such that 3 < p ? M (= 13), these characters are 
precalculated for all Tr and permanently stored. 

Replace x by x + e+ - X(1P) . Pass to point 4. 

4. Some Details of the Program. It should be mentioned that great values of p 
may cause X(1P) and x to exceed the word-length. Multiple-word routines are then 
automatically called into action, permitting, in the actual lay-out of the program, 
character values of at most 576 decimal digits. 

Further, if p > Al' > Al (M' = 19), the calculation of X(1'P) is not executed in 
point 6, but the rim P)+ is stored and then the program passes to point 4. For the 
storage of different IP+ and for accumulating coefficients of them, a set of working 
storage cells is available. When it occurs that this set is fully occupied, and always 
before passing to the output routine, the calculations of point 6 are executed for all 
the stored rims, and the value of x is correspondingly determined. After clearing the 
set of working cells, the program may continue, if necessary. 

Some of the points which have been programmed in a specific way will be 
described in the sequel. 

a. Determination of the indicators (point 3). By shifting the rim P to the left 
ka steps (and dropping the digits passing the binary point), a number Q is obtained. 
By changing all zeros of P into 1, and all ones into 0, one form of complement, P, 
is obtained. The "logical product" of Q and P gets a 1 in those positions (only) 
where both Q and P have a 1. Thus, this logical product gives directly all the indica- 
tors of ka-hOoks in P, and it is inserted into Ha . 

b. Test on hook indicators in Ha (point 4). The negative contents (modulo 2) of 
Ha are normalized. This means that a number, represented by binary digits, is 
shifted to the left, until unequal digits appear on either side of the binary point. In 
the actual case, the normalization will give a 1 to the left, a 0 to the right of the 



CALCULATING THE CHARACTERS OF THE SYMMETRIC GROUP 109 

binary point. If there were no indicators in H., there would be only zeros to the 
right of the binary point after the mentioned normalization. This case is very easily 
distinguished from the opposite one. 

c. Removal of an indicator and a hook (point 4). The normalization process includes 
counting the shift steps. Thus, the number, v, of shift steps during the normaliza- 
tion under point b above determines the position of the left end-digit of the first 
ka-hook, this position being the (v + 1)st after the binary point. The number 
h = 2'1, obtained from 2-' by shifting v steps to the right, is subtracted from the 
contents of Ha, thus removing the first indicator. 

Further, if the negative number -h is shifted ka steps to the right and then h is 
added, we obtain 

h h - h . 2k"a = 2-l - 2-k'- 

According to (7), the rim, appearing when the hook in question is removed from P, 
is obtained as P+ = P + h'. 

d. The number of zeros within the hook (point 4). The logical product of the num- 
bers h' and P consists of those digits of P which appertain to the hook, and, outside 
the hook, zeros. By means of a v + 1 steps shift to the left, it is brought to such a posi- 
tion that the interior of the hook begins at the binary point. In the present version 
of the program, the number, z, of zeros within the hook is now obtained by repeated 
normalizations, accumulating only the number of those shift steps when zeros pass 
the binary point. It would have been better to examine the hook one digit at a 
time, because such a process is more rapid for hooks of short length. Removals of 
short hooks have to be repeated considerably more times than those of longer hooks. 

Point 4 is the most frequently repeated sequence of the program in the phase 
of applying the recursion formula (3). The programming methods just described 
have resulted from my efforts to reduce the execution time for this sequence as far 
as possible. The weakest point is still the determination of z. 

With respect to the definition (12), removal of hooks of length = 1 need not 
occur in a standard running of the program, unless such hooks are used for special 
purposes, e.g. checking. Instead of the removal of 1-hooks, the Frobenius formula 
(1) is used which, fortunately, works considerably faster. 

e. The calculation of X(1P) (point 6). Only a few remarks on the programming of 
formula (1) are to be made. The calculated characters, which are all integers. may 
have very large values requiring arrangements for multiple-word calculation. 
Further, the numerator, being still larger, should not be explicitly evaluated, and, 
finally, operations which might introduce round-off errors should be avoided. The 
following strategy will meet these demands. Each factor entering in (1) is factor- 
ized into a product of prime powers. In a set of storage cells, one cell for each prime 
number, the exponents of the prime powers are accumulated, i.e. added if they- 
come from the numerator, subtracted if they come from the denominator. After- 
wards, the character is obtained by successive multiplications of the prime num- 
bers, with due regard to the final values of the exponents, which will never be 
negative. When multiple word-length is required, the number of storage cells it 
successively adapted to the actual demand. As an intermediate stage, as many of 
the prime factors as possible without exceeding one word-length are multiplied. 
thus reducing the required number of multiple-word operations. 
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5. Observations from the Computing Work. The version (i) of the program 
(see ?3) has been run by the regular staff of BESK-operators, when computer time 
has been available. Complete character tables have been calculated for all N ? 20. 
The results were produced by the machine punched on paper tapes, and these have 
also been printed out on paper sheets [8]. In each pair of conjugate representations, 
p and A, only one has been treated. The chosen representation partition has been 
written out as a common heading for the characters in this representation. These 
have then been listed following the class partitions, K, which succeed each other in 
lexicographical, non-increasing order, beginning with K = (V) and ending with 
K = (IN1). The calculation time, including the tape punching of the results, was for 
the table N = 16 about 105 minutes, for the table N = 20 about 51 hours, of course 
scattered on many partial runninigs. 

The versions (ii) through (v) have not been systematically employed for table 
calculations. Yet, many series of experiments have been made, giving some informa- 
tion on the differe-nces in complexity between the calculation schemes in different 
cases, e.g. for different classes. The results can not be reported here. 

The variant (vi) was prepared in view of giving an experimental answer to the 
question proposed ill Note 9) of the paper [11 by Bivins and others. The case of 
K = ( IN) has been treated fora all N ;5 30, and we will list here those representation 
partitions which were founr( to give the greatest character for each of the N = 
:3, 4, ... I, 30: (2.1), (3.1), (3.2.1), (4.2.1), (4.2.12), (4.22.1), (4.3.2.1), 
(5.3.2.1), (5.3.2.1 2), (,5.3.2.1 ), (6.4.2. 2), (5.4.3.2.1), (6.4.3.2.1), (6.4.3.2.1 2), 

(7.4.3.2.12), (7.5.3.2.I2), (7.5.3.22.1), (7.5.3.22.12), (7.5.4.3.2.1), (7.5.4.3.2.1 ), 

(8.5.4.3.2.1 2 ) (8.6.4.3.2. 12 ), (8.5.4.3.2 2.12), (8.6.4.3.2 2.1), (8.6.4.32.2.12), 

(8.6.5.4.3.2'. 1), (8.6.5.4.3.2. l2). 

(Gitiant character valulies may appear already at rather small degrees N. As an 
example, for N = :30, the maximumn character is a number with 16 decimal digits. 
The greatest value calculated by the version (v), under the condition (9), is ex- 
pressed by :325 decimal digits; it ()1orresponds to N = 361, p = (1919), K = (1361). 

Another character, correspon(linlg to the same N and p, but , is a 
313-digit, negative ini mbr, etc. 

There is no particular checking sequence in the program. The reason is that the 
mnain purpose of the program is to calculate individual characters, as in version (v), 
and then the normal checking method, based on orthogonality, is of no use. There- 
fore, in order to check a calculated value, x'P, one should recalculate it in introducing 
the components k, , "2 -. of K ill an altered order, this leading to a check if they 
are not all equal. If they are all = 1, i.e. K = (1X'), the recalculation is made with 
one or more wa 1 in (12), where q is adequately diminished. Thus, the only un- 
checked cases are those of K = (p') with p > 1. Concerning these cases, see, how- 
ever, ?7. 

Most of the tables calculated by version (i) being unchecked, it is still possible 
to subject their values, as they are punched on paper tape, to the orthogonality 
test by means of a separate program. However, it will be neither possible nor neces- 
sary to carry out this test to its full extent. 

6. Deductions for Further Improvements. Although it is interesting that, 
theoretically, the entire character calculation could be built up by hook removals. 
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it is important that, in practice, more effective routines can be introduced, reducing 
the number of hook removals. For such a purpose, the Frobenius formula (1) was 
included in the program described above, where it could replace the removals of all 
hooks of length = 1. In an improved program, this formula is to be generalized to 
the case of K = (pQ) where p may be > 1. 

Another way of reducing the number of hook removals to be executed is to 
observe that one and the same rim may be obtained several times when sequences 
of hooks of length k1 , k2, *, k, (2 ? n' < n) are removed. Instead of calculating 
the contribution to x of that rim each time it occurs, one should multiply the con- 
tribution by an appropriate coefficient. Already in the described version of the pro- 
gram, this procedure was used at a certain point, as indicated in the beginning of 
?4 ( ... if p > M"' > M . ). It should, however, be used more systematically. 

The realization of these desiderata requires some new formulas and rules. These 
can be based on the rim notation. In [4], detailed foundations and deductions are 
given, and, in the present paragraph, we shall quote from [4] what is needed for the 
developments in ?7 and ?8. 

The essential part of the rim notation, i.e. the sum (8): 
m 

(8) r = E Ri 

i=1 

will now be called, as in [4], the binary model of the partition p. If (8) is written 
down in binary digits, to each 1-valued digit is associated a quantity called its 
weight, defined as the total number of zeros to the right of it up to the binary point. 
The weight of r is defined as the sum of the weights of its 1-valued digits. Calling 
it N(r) we get, with regard to (2), 

(13) N(r) = r + r2 +* + rm 

Thus, the weight of r is equal to the number N of which p is a partition. A special, 
binary model called u, with Ri = m- i, has the weight 

m 
(14) N(u1) = 0; = m-i 

The digits, 1 and 0, of a binary model r could be considered as indicating the 
presence or absence, respectively, of m movable objects at the locations represented 
by the digit positions of the number r. 

The removal of a k-hook from the rim R, as in (7), is equivalent to an operation 
called reduction of the binary model r to another one, r', such that 

(15) r= r + 2R1k - 2R,. 

It is easily proved (see [4] for this and other details) that 

N(r') = N(r) -k, 

i.e., k is the decrease in weight. We say that (15) is a reduction of r by the amount k. 
This reduction could be described by an operation on the jth object of r consisting 
in moving it k steps to the right. 

A sequence of successive reductions by the amounts ki , k2, *--, kn is called a 
chain of reductions. If k1 + k2 + ... + kn = N, the chain will transform r to a 
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binary model u of the form (14). The number of existing chains of reductions by 
the indicated amounts, leading from a given r to u, is not independent of the order 
of succession of the reduction amounts. Therefore, we have introduced the value 
of a chain as (-1 )z1+2+. +Zn, where z, is the number of objects (1-valued digits) 
passed by the moved object during the reduction by the amount k,. As shown in 
[4], the sum of the values of all chains of reductions by the amounts k1, k2, - - -, k, 
is the same as the sum obtained, if another order of succession is chosen for these 
amounts. It follows that this sum is characterized by the partition K of N having 
the components ki, k2, * * *, kn . It will be denoted by x,(r) and sometimes called 
the characteristic value of K determined by r. It is, in fact, identical with the char- 
acter x.', but it may be convenient to keep the notation X(r). 

A generalization is obtained in considering those chains which reduce r, not to 
u, but to r', where r' is the binary model of a partition p' of a number N(r') < 
N(r). The sum of the values of all chains of reductions leading from r to r' and 
consisting of reductions by the amounts indicated by the components of a certain 
partition K of the number N(r) - N(r'), will be denoted by x," (r; r') and called 
the characteristic value of K determined by the reduction of r to r'. If Kc' is a parti- 
tion of the number N', we get the fundamental formula 

(16) x =E x, (r; xe 

where the binary models r' correspond to partitions p' of the number N'. The demon- 
stration depends mainly on the consideration of the chains leading from r to r' and 
of those leading from r' to u. Concerning the details, the reader is referred to [4]. 
It should be observed that (3) is contained in (16) as a special case. 

We shall show, in ?7, how (16) may simplify the calculation of xp if special 
properties of the components of K can be utilized, and, in ?8, how (16) may lead 
to relations independent of K, but depending on different p. 

7. Utilization of Properties of K. If K is a partition of N, let K' be the partition 
formed by those components of K which have a common factor p, where p is an 
integer > 1. Then, the components of K may be written pql, pq2, ***, pqh . This 
K'n is a partition of a number, say pMll, also containing the factor p. The numbers 
q1 X q2, ... * qh are the components of a partition of II, which we will call i. Finally, 
we put 

N - pM- N' 

being, in (16), the weight of r'. It is clear that K' is a partition of this N', as it is 
formed by all those components of K which are not comprised in Kt. 

At the determination of xe, (r; r'), the objects of r are moved to the right by 
multiples of p steps. Therefore, the binary model r may be split into p binary models 

(1) (2)() r , r r, in such a way that each object remains within one and the same 
model when moved. In order to get suitable and unambiguous rules, we shall assume 
that both the number of 1-valued digits of r and the total number of digits of r are 
divisible by p. In fact, we can always adjoin ones to the right of r and zeros to the 
left, because this does not change the weight of r. Now, the splitting of r is most 
easily accomplished in writing the digits of r in successive, vertical columns of 
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height p, as in a matrix. The digits found in horizontal rows then form the binary 
models r U), j = 1, 2, ..., p. 

Each chain of reductions corresponding to K', executed on r, is represented by 
chains of reductions by the amounts qi, q2, * * , qk executed on the binary models 
r(i). Thereby, the reduction amounts on rig will be denoted ql(", q2 'I, ... , q(' 
which are the components of a partition t(') of a number M(i. It is necessary that 

(17) M(') < N(r()) 

Because M(1) + M(2) + + M(p) = Al, it follows that necessarily 

(18) EN(r())-Mt 

as soon as there are chains corresponding to K'. 

On the contrary, if 

(19) E N(r(") < Ml, 
i-i 

there can not be any chains corresponding to K', and, hence, the sum in (16) is 
empty. Consequently, if (19) holds, the character x,,',g;(r) = 0. 

Returning to the case when (18) is satisfied, we have to distribute the compo- 
nents of I, in all possible ways, to partitions tt) of numbers M('" satisfying (17). For 
each of these distributions we subject the binary models r(i) to chains of reductions 
by the amounts given by the appropriate t(). We denote the resulting binary models 
by r. One particular system of such binary models is obtained by means of chains 
of reductions which correspond to certain chains of reductions executed on r. The 
binary model r', obtained by this reduction of r, can be written down very easily, 
if the digits are read column by column in the matrix where the r"'5 are rows. 

Further we may conclude, similarly to the discussion in [41 (p. 105), that the 
value of the chain from r to r' differs from the product of the values of the chains 
from r(j) to r'Q) only by a factor = sgn Q -sgn Q', where sgn Q is + 1 or -1 depend- 
ing on r and the r'j) only, whereas sgn Q' is + 1 or -1 depending on r' and the 
r' U) only. For the sums of these values we get 

(20) Xg"(r; r') = sgn Q-sgn Q' E TI xi) (r(J); r'('D) 
j1 

where the summation is extended over all distributions of the components of t to 
such t(j) which lead to the actual set of r'(i). If some of the components of t are 
equal, it may happen that one set of t(') is obtained several times. Let a component, 
valued i, be present ri times in t and rji times in {(i). This set of t(-" is obtained so 
many times as given by the expression 

(21) P((1) (2) ,(P)) = T. 

3-1 

We can now write (20) in the following form: 
p 

(22) Xe" (r; r') = sgn Q - sgn Q'. E ..( ) * It)) TI xi(j (re't r'i) 
ji- 
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where the summation is extended over all different distributions of t to t(J. When 
inserting (22), with (21), into (16), we observe that the factor sgn Q, but not the 
factor sgn Q', may be put outside the summation sign (over r'). 

The sign factor sgn Q is determined by means of the number w of inversions of 
the objects of r introduced by replacing r by the set r(J'. A method to obtain w, 
suitable for a computer program, could be sketched as follows: The-method consists 
in counting over the objects column by column in the matrix formed by r(J'. Let, at 
a certain moment, mUj) be the number of still uncounted objects in the jth row. If, 
then, the next object is encountered in the Jth row, the following two operations 
are made: 

(i) The accumulated value of X is augmented by m~l) + m(2) + + m('1l. 

(ii) me'n is replaced by m'>) - 1. 

When all objects have been counted, we get 

(23' sgnQ = (-1)'. 

Of course, sgn Q' is obtained similarly from rt(i). 
Special cases occur if ( 18) reads as an equality. In these cases, the relations (17) 

must be equalities, too, and it follows that all the binary models r'"' have the weight 
u 0. Therefore, there is only one set r'0') and one single r'. This r' is the binary model 

of the partition called by Littlewood (71 the p-residue, and by Nakayama [51 
the pcore of p. Observing that, in these cases, the characteristic values 
XI(i)(r '); r'0')) become veritable characters, the formula (16), with regard to (22) 
and (21), gives the following expression: 

(24) XK"E (r) = sgn Q*sgn Q'*xe (r'>) *2 xTi) (rim>). 

This will be still more simplified if all components of K have the common factor p. 
In this case K" may be chosen = K so that K' will vanish. If all the binary models 
r(i) contain equal numbers of l-valued digits, the character x.(r) is given by (24), 
where x. (r') has to be put = 1. If the r(j) do not satisfy this condition (although 
the number of 1-valued digits in r is divisible by p), the inequality (19) holds (see 
t41) and, consequently, the character x.(r) is 0. 

Finally, if X = (pM), the last considerations may be completed by giving the 
explicit expressions for xt()(rUi)). Because t() = (1 M"), the Frobenius formula 
(1) is applicable. Writing, in analogy to (2), 

Rh= rh + m - h (h = 1, 2, *. * 

where m is the number of 1-valued digits in each ro, we get for the 
quantities in (21): 

r1 = M; r1- = MU).; ri = trj=O fori # 1. 

Observing that there is only one set of t", we obtain from (24) the non-zero char- 
acters: 

(25) X(tAx>(r) = sgn Q sgn Q'. M! fJ ( k (Rh, . , 
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In summarizing, we find that the utility of the described method may appear in 
two respects. Firstly, the binary model r is split into the models r '0 which, corre- 
sponding to partitions of smaller numbers than the original one, will need consider- 
ably less computing work. Secondly, the calculation of the factor (P by means of 
(21) will shorten the computing work as soon as it replaces the treatment of several 
equal terms in a sum. The utility of the inequality (19) for the detection of zero- 
valued characters is evident. 

8. Relations Independent of K. Turning our attention to the binary models 
r and r' in xi (r; r') of (16), we write, as in (8), 

m m 
(26) r = E2Ri and r' = E2Ri 

toi i-1 

where, as in (2), 

(27) Ri = ri+m-i and Ri' =ri' + m-i, 

the number of 1-valued digits being the same, m, in both models. 
Preliminarily, let us assume that r and r' satisfy the conditions: 

(28) fri 2 i' for i = 1 2, * MY 

rti' > rj+ for i = 1, 2, , m - 1. 

By (27), this means 

Ri ' R,' and RL' > Ri+1, respectively. 

It follows that, by each chain of reductions leading from r to r', the ith object of r 
will become the ith object of r', i.e. the objects will not be permuted. The values of 
such chains, corresponding to the components of K (written instead of K), will be 
+ 1, and the sum, xK (r; r'), of these values will be equal to the number of the chains. 

If the components of K are ki , k2, * , , with 

ki + k2 + *X+ k, = NY 
each chain is constructed by distributing these components to sequences k(i), k2( ), 

, ni (i = I , m), the ith sequence indicating the movements of the 
ith object, thus 

(29) k1lt) + k.2j + * + k(i) = Ri-Ri' = r- ri'. 

The chains depend merely on K and on the differences ri - = di, but not on the 
components ri and ri' themselves, provided that they satisfy (28). The number of 
chains is equal to the number of distributions of K satisfying (29). If another pair of 
binary models r and r' satisfies (28) and gives the same set of differences d,, which 
may, however, come in a different order, the system (29) will still have the same 
number of solutions. Therefore, denoting by 6 the partition of N with the com- 
ponents d,, d2l, i , din, we find that the number of chains leading from r to r' 
depends merely on K and 6. We will write this number 4,6,a, and for binary models r 
and r' satisfying (28) we have 

x. ( r; r') = 
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In the general case, the condition (28) does not hold but only 

(30) ri2ri' for i = 1, 2, *- , m, 

expressing that the objects never move to the left during a reduction. The objects 
may be permuted by a reduction chain. Let us consider those chais by which the 
ith object of r becomes the pith object of r' (i = 1, 2, * * *, m). Here, the numbers 

P1 X P2, ... * pm form a permutation P of the integers 1, 2, *, m. Not all permuta- 
tions P are possible, because it is required that 

(31) Ri, - ? > 0 forall i 1, 2, ,m. 

We write 

Ri - = di 

which are, as before, the components of a partition 6, now depending on P. The 
number of the chains considered is < A,6 It will be < i,8 as soon as a distribution 
like (29) would cause t\vO objects to coincide after some reduction steps, which is 
not permitted. By a reasoning, made in detail in (4] (see p. 99 ff.), we find that, if 
sgi I> is defined as + I for all even and - 1 for all odd permutations, the sum of all 
sgnl P*#[a, will be equal to the sum of all values of the chains leading from r to r'. 
Thus, 

(32) XK (r; r') - sgn P 
(P) 

where P) ranges over all pernititatiolns of 1, 2, , m compatible with (31). This 
formula holds for all partitionMs K of the number N, so that we may leave out the 
index K. By x(r; r') andl P4 we could mean vectors or 1-column matrices, simplifying 
(32 ) to 

(*33) x(r; r') - sgn P1)i 
(P) 

We note that, for u' = l, tile quantity xK (r; r') means the character xY.' Thus, 
the vector xP is, by means of (33), expressed as a linear combination of the vectors 

8, both p aend 6 l)eiilg par;titionis of N. Now, as the different sectors x' are linearly 
inldepen(lent, and as the nInll)er of the vectors O is equal too that of x', we conclude 
that the v-ectors 4 also formn a linearly independent system. 

At the practical application of these formulas we have to calculate the quanti- 
ties iIQ. This could be done either by (29) or by counting chains of reductions from 
an r to ai r', ar1 bitrarily- chosen but in accordance with (28). It is essential that no 
determinationls of the signi + or - tire required at this stage of the process. This 
means that the most tilme-consuiming point in the calculation program (see ?4, d) 
is avoided. At the insertion in (33), the factor sgn P is determined independently 
of the K. 

In certain situations one may prefer expressing the 4,d in terms of x'. This is 
done by solving the system (33), with r' = u, with respect to iA. The obtained 
expressions also present a theoretical interest. In fact, C, is a compound character 
for the class K of the symmetric group in a representation obtained in the following 
way. Let S be the group of all permutations of a set of N objects. Dividing this set 
of objects in subsets containing di, d2, . .. , d. objects, according to the partition 
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a, we consider the subgroup S' formed by those permutations which only permute 
the objects within the subsets. The group S is divided in complexes, SI, S2, * * 
Sh, induced by the subgroup S6. For each element s E S we have 

s Si =Sit 

Thus, SI, - - *, S% form a basis for a representation of S by matrices. The trace of 
the matrix representing s can be shown to be = Gina where K is the class to which 
s belongs. The demonstration must be omitted here. The above mentioned expres- 
sion of &f in terms of x1 indicates directly the structure of the described representa- 
tion. 

Returning our attention to the computing work required by (16), we see how 
the formulas (32) and (33) permit the calculation to be performed in "blocks". 
This will be the more necessary, the more the degree of the symmetric group 
increases. An improved computer program for character calculation should be 
planned so as to combine in the most efficient way the methods described in ?7 and 
?8. This program has not yet been constructed, and, in fact, it is necessary first to 
establish the purpose for which the program is to be used, because this has a great 
influence on the decision concerning efficiency. 
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